Archiv rubriky ‘Technologie’

Radiofrekvenční štítky pro bezpečnější setkávání

ESA pracuje na vývoji radiofrekvenčních štítků, které by měly usnadnit odstraňování kousků kosmické tříště. Jednou z největších výzev pro činnosti v těsné blízkosti je správné určení relativní vzdálenosti, rychlosti, otáčení a pozice cílového objektu. K měření těchto vlastností se dají použít senzory – třeba LIDAR (LIght Detection And Ranging), který laserovými pulsy skenuje cíl a měří čas, který světlo potřebuje k odražení od cíle a cestě zpět. Vlnová délka světla je mnohem kratší než u radiových vln, takže tento „laserový radar“ dává mnohem přesnější výsledky. Na druhou stranu má však velké nároky na množství elektrické energie, což je na oběžné dráze vzácný zdroj. Kvůli tomu ESA studuje možnosti dalších systémů, které mají usnadnit navigaci družice k cíli – jedním z nich jsou pasivní radiofrekvenční (RF) štítky.

Jak ochránit kola před lunárním regolitem?

Lunární regolit je nepříjemný protivník. Jeho zrníčka jsou jemná jako prach, ale pozor, zdání klame! Jejich hrany jsou ostré jako skleněné střepy. Třeba během výpravy Apollo 17 si astronauti stěžovali, jak tento velejemný prášek pronikl prakticky všude. Pokryl jejich skafandry, kterým zablokoval ramenní klouby, dostal se do obytné části a způsobil i symptomy dočasné regolitové senné rýmy, kterou si prožil astronaut Harrison Schmitt. Tyto příznaky naštěstí rychle odezněly, ale problém, který lunární regolit představuje pro budoucí mise tu zůstává.

Zahrajeme si lakros na Titanu?

Společnost Honeybee Robotics vyvinula systém odběru a transportu vzorků, který je schopen sám provádět měření, není závislý na gravitaci, poradí si i s lepivými substancemi a je flexibilní z hlediska pracovního prostředí.Tento systém je navržen tak, aby mohl pracovat na různých tělesech – ať už mají či nemají atmosféru. Nová fáze přelomového planetárního výzkumu vyžaduje přístup k podpovrchovým vzorkům a potřebuje tedy získat potřebný materiál pro analýzu. NASA již vytvořila několik misí, které mají za úkol odebrat povrchový materiál a doručit jej k palubním analytickým přístrojům. Tyto odběrné systémy však spoléhají na gravitaci, která zajistí přesun vzorku z lopatky či vrtáku do analytického přístroje. Tato osvědčená metoda se ale dostává do úzkých, pokud má pracovat s lepivými materiály.

Zážehy korekčních motorů pro přistání na Měsíci

Budoucí lunární landery vyslané k Měsíci v rámci programu Artemis by mohly používat korekční trysky nové generace. Jde vlastně o malé raketové motory, které mají za úkol korigovat dráhu či výšku stroje, stejně tak mohou zajišťovat i vstup na oběžnou dráhu Měsíce nebo sestup k povrchu. Než se však tyto malé raketové motory vydají k Měsíci, aby tam doručily vědecké přístroje a technologické demonstrátory, musí projít zevrubným testováním na pozemských zkušebních stanovištích.

Robotický lunární kopáč – NASA přijímá návrhy

Kopání na Měsíci je pro roboty složitý úkol – na jedné straně musí zvládnout vykopat a přemístit všudypřítomný regolit, ale na straně druhé musí být cokoliv, co dopravíme na Měsíc, co nejlehčí. Problém je, že bagry používané na Zemi spoléhají právě na to, že jsou těžké, což zvyšuje jejich tření s povrchem a usnadňuje jim práci. NASA sice má řešení, ale ráda by jej ještě vylepšila. Jakmile bude tato technologie dopilována k dokonalosti, mohli bychom se dočkat toho, jak robotické bagry pomohou založit a udržovat lunární základnu v rámci programu Artemis.

Družice ve velkých výškách atmosféry

Budoucnost může být různá. Jedno je ovšem jisté. Pokrok se zastavit nedá a tak nás jistě čeká řada inovací, které možná mohou na první pohled vypadat šíleně nebo utopicky, ale opak je pravdou. Vylepšení se v nadcházejících letech zřejmě dočkají některé druhy družic, zejména ty snímkovací. Jejich nevýhodou jsou vysoké výdaje a nasazení v extrémním prostředí kosmu, které vyžaduje speciální úpravy. Jinou nevýhodou například je, že se musí podřídit zákonům nebeské mechaniky a neustále tak velkou rychlostí kroužit kolem Země. Což je fakticky omezuje v dlouhodobém zaměření se na konkrétní místo, které se zdá v danou chvíli něčím zajímavé. Výjimku tvoří družice na geostacionární oběžné dráze (GEO). Geostacionární oběžná dráha je však od Země tak daleko, že k získání jakéhokoli rozumného rozlišení snímkovací družice (řekněme 1 m) je zapotřebí velmi pokročilá optika a obrovské zrcadlo. Družice na geostacionární dráze, třeba 36 000 km od Země, může zůstat zaměřená na dané místo na planetě 24 hodin denně po celý rok. Toho využívají např. i komunikační družice k zajištění nepřetržité komunikace a k přenosu televizního vysílaní, ale tyto dráhy využívají samozřejmě i některé snímkovací a meteorologické družice. Ty například poskytují obrázky celého kotouče Země cca každých 30 minut, aby mohly pozorovat pohyb oblačnosti. Tou největší slabostí podobných družic tedy je relativně velká vzdálenost od Země, se kterou jsou spojeny logistické problémy.

Supertenké ohebné fotovoltaické panely

Evropská kosmická agentura podpořila vznik ohebných a supertenkých fotovoltaických panelů, které jsou díky zatím nejlepšímu poměru generované elektřiny vůči vlastní váze ideální pro kosmické aplikace. Prototyp fotovoltaického článku je tenčí než lidský vlas – pouze 0,02 milimetru. Vyvinuli jej specialisté z německé firmy Azur Space Solar Power a nizozemské tf2. Projekt byl financován prostřednictvím programu Technology Development Element, který ESA používá k podpoře výzkumu inovativních technologií použitelných v kosmickém prostoru.

Systém, který dostane OSIRIS-REx k povrchu a zpět

Cílem mise je odběr vzorků z povrchu Bennu

Již letos v létě čeká na sondu OSIRIS-REx úkol, který zatím žádná americká sonda nedělala – dotkne se povrchu planetky, odebere zde vzorky a vrátí se zpět (všichni věří, že tak učiní bezpečně). Od chvíle, kdy sonda dorazila k planetce Bennu však pozemním týmům nedává spát nečekaná výzva – jak zajistit bezpečný odběr na planetce, jejíž povrch je posetý balvany o velikosti domů. V řídícím středisku jsou však šikovní lidé, kteří umí improvizovat – rozhodli se použít balvany jako navigační body a vytvořili přesnou metodu, která by si s touto výzvou měla poradit.

Protnutí dvou světů

Z nizozemské loděnice společnosti Royal Huisman v Amsterdamu nedávno odcestovala ke svému majiteli dosud největší hliníková plachetnice na světě – Sea Eagle II. Na tom by nebylo zas až tak nic zvláštního, kdyby na její konstrukci nebyly využity postupy známé z kosmonautiky. Konkrétně jde o metody, které vyvinula ESA (Evropská kosmická agentura). Plavidlo svou konstrukcí v současnosti stojí na technologické špičce a je pěkným příkladem toho, jak rozvoj kosmonautiky může sloužit i relativně obyčejným věcem na Zemi. Luxusní plachetnice SEA EAGLE II (PROJECT 400) je třístěžňový škuner postavený na zakázku. Měří 81 m a na šířku má v nejširší části 12 metrů. Díky svým rozměrům se řadí do klubu 10 největších plachetnic světa a jak už bylo popsáno, jde o vůbec největší jachtu s hliníkovým trupem na světě. Kvůli co nejlehčí váze má stěžně vyrobené z uhlíkového kompozitu. Vnější podobu navrhlo architektonické studio Dykstra Naval Architects a interiér má na svědomí Mark Whiteley. Přičemž společně na konečné podobě vzájemně spolupracovali.

3D vytištěná spalovací komora pro budoucí Vegu

Spalovací komora metanového motoru M10 vytvořená metodou 3D tisku podstoupila první sérii ostrých statických zážehů. Pokud jste o motoru M10 zatím neslyšeli, není se co divit. Zatím totiž není v provozu – s jeho nasazením na horním stupni nejlehčí evropské rakety Vega se počítá až v rámci komplexní modernizace tohoto nosiče po roce 2025. „Výsledky jsou povzbudivé a naše týmy specialistů na pohony jsou na správné cestě k vývoji této nové technologie, která umožní další vývoj raket Vega,“ uvedl Giorgio Tumino, který má v evropské kosmické agentuře na starosti vývoj rakety Vega a zařízení Space Rider, které by umožnilo návrat z oběžné dráhy.