Články autora 'Vladimír Wagner':

Budeme létat skrz červí díry nebo s warpovým pohonem?

Nedávné pozorování čtvrtého případu splynutí černých děr pomocí gravitačních vln ukazuje začátek intenzivního studia těchto objektů. Mohla by vést k poznání vlastnosti jejich horizontů a průlom v testech gravitačních teorií a možná i cestu ke kvantové gravitaci. Tyto znalosti jsou kruciální pro rozhodnutí, zda bude možné využívat k mezihvězdnému cestování černé díry nebo warpový pohon. Podívejme se na toto téma podrobněji.

Na cestě k vesmírnému výtahu

Pro rozsáhlejší expanzi lidí do vesmíru je třeba vyřešit levnou a efektivní dopravu nákladů ze Země či dalších těles do vesmírného prostoru. Kromě mnohonásobně využitelných raket existuje několik mnohem exotičtějších způsobů dopravy materiálů na oběžnou dráhu okolo planety. Mezi ně patří idea kosmického výtahu či věže, které by umožnily zjednodušit dopravu nákladů na oběžnou dráhu, případně mezi různými oběžnými drahami.

Jak vypadá situace okolo mikrovlnného (EM) pohonu

V současné době vyšel první článek v recenzovaném vědeckém časopise, který popisuje testy s mikrovlnným motorem. Testy realizované v laboratoři NASA byly první, při kterých se využívalo torzní zařízení pro měření extrémně slabých tahů umístěné ve vakuu. Proto je dobré si nyní situaci okolo mikrovlnného pohonu podrobněji shrnout. Jde o velmi jednoduché zařízení, skládající se z měděného dutinového rezonátoru kónického tvaru. V podstatě se jedná o měděný trychtýř, u kterého je konec s menším průřezem uzavřen dielektrickým rezonátorem. Uvnitř dutiny je pak anténa generující mikrovlnné záření (většinou magnetron) s frekvenci v oblasti gigahertzů. Předpokládá se, že se tímto specifickým tvarem vytváří rozdíl tlaku na předním a zadním konci zařízení. Ve směru k menšímu konci se tak má generovat sice velmi malý, ale podle některých experimentů znatelný tah.

Gravitačním prakem střílíme do mezihvězdného prostoru

Zatím jediným způsobem, kterým se nám podařilo poslat sondy k hranicím Sluneční soustavy a získat první informace o mezihvězdném prostoru, byly gravitační manévry při průletu kolem některé z velkých planet naší planetární soustavy. Intenzivně se tato metoda využívá také k zrychlení a zefektivnění cest k jejím různým tělesům. Všech pět pozemských sond, které se zatím vydaly na cestu do mezihvězdného prostoru, využily gravitačního manévru v blízkosti některého z těles Sluneční soustavy. Pomocí správně navrženého těsného průletu v blízkosti planety je možné využít části energie ukryté v oběhu planety kolem Slunce k urychlení sondy vzhledem ke Slunci. Protože planeta má oproti sondě velmi velkou hmotnost, rychlost jejího pohybu vůči Slunci se odebráním energie zmenší zanedbatelně.

Kdy budou potřeba kapitáni slunečních plachetnic? (2. díl)

Na možnostech využití sluneční plachty pracovala také organizace NASA. Ta vyvinula plachtu pro program malých sond CubeSat . Ty mají standardní rozměr svých stran 10 cm a jsou vynášeny jako přívažek klasických velkých družic. Družice se sluneční plachtou Nanosail-D zaujímala na palubě rakety rozměr tří standardních rozměrů CubeSat. V první krychli byly kamery, senzory a řídící systém, v dalších dvou pak plachta. Po rozvinutí měla plachta rozměr přes 9 m2. První pokus vynést tuto družici jako přívažek při třetím startu rakety Falcon 1 proběhl 3. srpna 2008. Raketa však selhala a náklad spadl do Pacifiku. Úspěšný byl až Nanosail-D2, který využil záložní exemplář plachetnice a na oběžnou dráhu ve výšce 650 km se dostal pomocí rakety Minotaur IV 20. listopadu 2010.

Kdy budou potřeba kapitáni slunečních plachetnic? (1. díl)

Idea sluneční plachetnice se objevuje již na počátku kosmického věku, avšak její konkrétní realizace je stále na úplném začátku. Podívejme se, jak daleko jsme od budoucnosti, ve které kapitáni pod plachtovím dobývají vesmírný prostor. Vesmírná či sluneční plachetnice se vyskytuje například v knize Pierra Boulleho Planeta opic. Ještě dříve se objevila v povídce Cordwinera Smitha „The Lady Who Sailed The Soul“ z roku 1960 nebo v povídce známějšího autora Arthura C Clarka „The Wind from the Sun“ z roku 1963 o závodu slunečních plachetnic na zemské orbitě. U těchto lodí se využívá tlaku záření, které je vyzařováno Sluncem a dopadá na „plachtu“ vesmírného plavidla. V daném případě dominantně jde o světelné záření, které vyvíjí v normální situaci zhruba o dva až tři řády větší tlak než sluneční vítr složený z nabitých částic. Plachta musí mít velmi velkou plochu, protože výsledný tlak záření je velmi malý. Výhodou je, že působí neustále. Problém nastane, pokud se chceme dostat do vzdálených oblastí Sluneční soustavy a ještě větší je, pokud zamíříme k jiným hvězdám. Za dráhou Jupitera je intenzita a tlak světla ze Slunce už pro plachtění slabý. Na způsoby, jak tuto situaci řešit se podrobněji podíváme za chvíli.

Sonda Juno napájená solárními panely u Jupiteru

V noci z pondělí na úterý 5. července se na 35 minut zapálil motor sondy Juno vyrobený ve Velké Británii a zpomalil sondu natolik, že byla zachycena Jupiterem a dostala se na oběžnou dráhu této největší planety ve Sluneční soustavě. Oběžná doba této dráhy je 53 dní. Informace o tomto úspěchu přišla na Zemi v 5:53 našeho času a v řídícím středisku propukl jásot. Po cestě, která měla délku 2,8 miliard kilometrů, se sonda stala teprve druhou, která bude pracovat na orbitě okolo planety. Sonda byla tou nejrychlejší, kterou zatím lidstvo ve vesmíru mělo. Její rychlost dosáhla při příletu k Jupiteru, tedy před brzdícím manévrem, 71,5 km/s vůči Jupiteru a 74 km/s vůči Zemi. Sonda se tak může pustit do zkoumání Jupiterovy atmosféry i jeho nitra a také okolí a magnetosféry, jejíž intenzita je 20 000 krát větší než té pozemské. Jde o první zařízení, které letí k této obří planetě a využívá k zásobování elektřinou i v této extrémní vzdálenosti od Slunce, fotovoltaické panely. Sonda by měla téměř dva roky studovat atmosféru Jupitera, jeho magnetosféru a rozsáhlý systém jeho měsíců a prstenců.