Zkoušky pro přesné přistání na Marsu

tech20150318b

Posadit kosmickou sondu na povrch Marsu není snadné. Citlivou techniku ohrožuje průchod atmosférou, je potřeba se rychle zbavit rychlosti a měkce dosednout. Není se co divit, že při prvních letech k Marsu se přistávací oblast nevybírala prakticky vůbec, nebo jen velmi hrubě. Postupem času si mohli lidé dávat větší cíle a vozítko Curiosity mělo možnost při průchodu atmosférou manévrovat tím, že využívalo vztlaku vstupního pouzdra. Přesto se ani v jeho případě nedá mluvit o přistání na konkrétním místě – vytipovaná přistávací oblast měla tvar elipsy s rozměry 20 x 7 kilometrů. Je jasné, že do budoucna je potřeba přesnost přistání ještě vylepšit.

Tento cíl si vytyčili inženýři z Jet Propulsion Laboratory v kalifornské Pasadeně. Vývoj nakonec dospěl do fáze praktických zkoušek velmi nadějného systému, který má umožnit přistání nejen na Marsu, ale i na Měsíci, asteroidu, nebo jakémkoliv tělese s pevným povrchem – a to vše s mnohem větší přesností, než bylo dříve možné. Na projektu se podíleli i odborníci ze společnosti Masten Space Systems, která sídlí v kalifornském Mojave a výsledkem byly dvě letové zkoušky nových technologií. Ke zkouškám se použil testovací stroj ADAPT (Autonomous Descent and Ascent Powered-flight Testbed, což můžeme volně přeložit jako samostatný zkušební stroj pro motorický vzestup a sestup).

ADAPT na raketě Xombie

ADAPT na raketě Xombie
Zdroj: http://www.nasa.gov/

ADAPT je postavený na zkušební znovupoužitelné raketě firmy Masten, která se jmenuje XA-0.1B Xombie. Pokud bychom ji měli k něčemu přirovnat, pak se svým určením nejvíce blíží k přistávacímu zařízení Morpheus, nebo Grasshopper od SpaceX. Raketa Xombie má navíc oproti svým konkurentům výhodu v tom, že umožňuje i v nízkých výškách dosahovat prudkého klesání, což podle výpočtů nejlépe simuluje podmínky na Marsu. Cílem je zmenšit vytipovanou přistávací oblast na cca. 100 x 100 metrů.

Abychom se ale dostali k samotným novým technologiím. Na testovací raketě se zkoušely dva systémy – LVS (Lander Vision System) a G-FOLD (Guidance for Fuel-Optimal Large Diverts). Systém LVS vyvinuli v rámci programu Mars Technology Development na direktoriátu vědeckých misí NASA. Přístroj se skládá ze senzorů, které umožňují řídícímu počítači zorientovat se nad terénem bz použití GPS nebo podobných technologií.

Xombie a ADAPT při letu

Xombie a ADAPT při letu
Zdroj: http://www.nasa.gov/

ADAPT s jeho pomocí nejprve pořídil sérii fotek terénu pod sebou, porovnal je s fotkami v databázi a na jejich základě určí, kde a v jaké výšce se nachází, zároveň dokáže určit, kde se nachází přistávací oblast. Mars je v současné době nasnímán ve velmi dobrém rozlišení. Fotky ze sondy MRO by mohly velmi dobře posloužit jako interní mapa, se kterou by počítač porovnával pořízené snímky.

Druhá technologie není fyzická – G-FOLD je „pouze“ algoritmus, který společně s JPL vyvinula Texaská universita sídlící v Austinu. jeho úkolem je počítat optimální dráhu sestupu společně s manévrováním stroje, aby bylo možné přistát co nejblíže vybranému místu. G-FOLD navíc pracuje s ohledem na spotřebu paliva, aby maximálně šetřil každým jeho kilogramem.

První testovací let ADAPTu proběhl 4. prosince 2014 a druhý o pět dní později. V obou případech vystoupala raketa před zahájením sestupu do výšky 325 metrů. Následně začala klesat a v tu chvíli se rozběhlo skenování pomocí LVS. Ve výšce 190 metrů už měl G-FOLD dostatek informací, aby vypočítal ideální dráhu pro přistání na 300 metrů vzdálené ploše. Sestava se naklonila a následně úspěšně dosedla na vytipované místo.

Důležité je říct, že všechno probíhalo automaticky – bez zásahu lidského elementu – jako kdyby se přistávalo na Marsu. Na Rudé planetě přitom ještě nikdy nepřistával stroj, který by během sestupu vyhodnocoval terén pod sebou, aby bezpečně přistál. Vozítko Curiosity sice disponovalo sestupovou kamerou MARDI, která monitorovala celý sestup od odhození tepelného štítu až po dosednutí, ale její snímky se pouze ukládaly do palubní paměti a pak se odeslaly na Zemi. Příští generace strojů by už mohla obrázky aktivně využívat k řízení sestupu.

Zdroje informací:
http://www.jpl.nasa.gov/
http://www.nasa.gov/

Zdroje obrázků:
http://www.nasa.gov/sites/default/files/thumbnails/image/tech20150318.jpg
http://www.nasa.gov/sites/default/files/thumbnails/image/tech20150318b.jpg
http://www.nasa.gov/sites/default/files/thumbnails/image/tech20150318c.jpg

Pin It
Nahlásit chybu

Hlášení chyb a nepřesnostíClose

GD Star Rating
loading...
Níže můžete zanechat svůj komentář.

Více se o tomto tématu dočtete zde »
(odkaz vede na příslušné vlákno diskuzního fóra www.kosmonautix.cz)


Jeden komentář ke článku “Zkoušky pro přesné přistání na Marsu”

  1. Anna Nova napsal:

    😉 toto je budúcnosť! A podobné technológie ako je Morpheus, a tankovanie metánu na cieľovom mieste. Trebárs na Marse, ako to teraz skúšajú na ISS.

Zanechte komentář